

Tetrahedron Letters, Vol. 35, No. 34, pp. 6299-6302, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)01311-X

Calixarene[4]-Podands and Barrel-Shaped Calixarene[4]-Cryptands Based on 5,5'-substituted-2,2'-bipyridine Subunits

Gilles Ulrich and Raymond Ziessel*

Laboratoire de Chimie, d'Electronique et de Photonique Moléculaires, Ecole Européenne des Hautes Etudes des Industries Chimiques de Strasbourg 1, rue Blaise Pascal, 67008 Strasbourg, France

Key words: Calix[4]arcnes, 5,5-substituted-bipy, podands, calix[4]barrelands, europium complexes

Abstract: The synthesis and preliminary lanthanides complexation studies of novel syn-1,3-bis-[(5-methyl-2,2'-bipyridine-5'-yl)methyl]-p-tert-calix[4]arene L₃ and tetra-[(5-methyl-2,2'-bipyridine-5'-yl)methyl]-p-tert-calix[4]arene L₄ podands and new bis-[(2,2'-bipyridine-5,5'-diyl)dimethyl]-bis-p-tert-calix[4]arene L₅ and tetra-[(2,2'-bipyridine-5,5'-diyl)dimethyl]-bis-p-tert-calix[4]arene L₅ and tetra-[(2,2'-bipyridine-5,5'-diyl)dimethyl]-bis-p-tert-calix[4]arene L₅ and tetra-[(2,2'-bipyridine-5,5'-diyl)dimethyl]-bis-p-tert-calix[4]arene L₅ and tetra-[(2,2'-bipyridine-5,5'-diyl)dimethyl]-bis-p-tert-calix[4]arene L₆ cryptands with a barrel-shaped structure are described.

Molecular species capable of exhibiting strong luminescence are interesting from both a fundamental point of view and also because of their potential use for a variety of applications (photocatalysis, chemiluminescence and luminescent labels in fluoroimmunoassay). Recently, considerable efforts have been dedicated to the design and synthesis of lanthanides complexes in which an absorption-energy transferemission (A-ET-E) process has clearly been established. Among the numerous bipyridine-based macrobicyclic¹, macrocyclic²⁻⁴, and cage-type⁵⁻⁷ ligands it appears that one of the most promising compounds for the obtention of highly stable and strongly luminescent lanthanides complexes, contain four oligopyridine subunits (four bipy³ or two bipy and two phen^{4,8}) or two bipy subunits incorporated in a macrocycle and phosphinate esters in the side-arms⁹ (bipy for 2,2'-bipyridine and phone for 1,10-phenanthroline).

To design a good ligand and emitting system based on lanthanide one has to take at least three prerequisites into account: (i) lanthanides ions must be shielded from the solvent; (ii) the ligand should not be sterically hindered in close proximity of the complexation site and finally (iii) the ligand must have the lowest excited-state sufficient high in energy to insure energy transfer to the lanthanides. Recent research has demonstrated that amide substituted calix[4]arenes can strongly encapsulated Eu³⁺ and Tb³⁺. Interestingly, the latter complex exhibit a remarkably high luminescence quantum yield.¹⁰ This, and previous findings from our laboratory, prompted us to investigate the synthesis of the novel podands L₃ and L₄ as well as new cryptands L₅ and L₆. 5,5'-substituted-2,2'-bipyridine precursors 1 and 2 were chosen as building blocks for the synthesis of the ligands presented in this communication.

We now wish to report the first examples of tetra-bipy substituted calix[4]arenes together with double calix[4]arenes bridge by two- or four bipy subunits. Due to their barrel-shaped arrangement, these new multikäfigartige molecules have been called calix[4]barrelands. Calixarenes functionalized by one bipy (substituted in the 5 position)¹¹ or by two bipy (substituted in the 6 position¹² or in the 4 position¹³) have previously been reported. Compounds L₃ and L₅ were respectively prepared by reaction of 5-methyl-5'-(bromomethyl)-2,2'-bipyridine 1 (2 equiv.) or 5,5'-(bromomethyl)-2,2'-bipyridine 2 (1 equiv.) with *p*-tert-butylcalix[4]arene (1 equiv.), using Na₂CO₃ as base.

The ¹H NMR spectrum of L₃ and L₅ are similar and exhibits, as expected, a single AB system for the bridging methylene groups, a singlet for the methyl (only observed for L₃) and for the OH, a singlet for the OCH₂-bpy groups, two singlets for the phenyl protons and the *tert*-butyl substituents. The spectrum shows a dissymmetric bipy for ligand L₃ (six patterns) and a symmetric bipy for ligand L₅ (three patterns).

Compounds L_4 and L_6 were respectively prepared by reaction of NaH (4.4 equiv.) with *p*-tertbutylcalix[4]arene (1equiv.), or by reacting NaH (4.4 equiv.) with the crytand L_5 followed by subsequent reaction with the monobromo derivative 1 or the dibromo derivative 2. The calix[4]barreland L_6 could not be prepared by a direct synthesis from the sodium tetraanion of *p*-tert-butylcalix[4]arene, but only from the sodium tetraanion of the conformationally rigid macrotricycle L_5 , followed by a subsequent reaction with the compound 2. It is noteworthy that high dilution conditions, are not needed for the synthesis of molecules L_5 and L_6 . A template-effect of sodium could not be excluded; however, the sodium-free cryptand was isolated at the end of the reaction. A transcoilde conformation of the two pyridine rings of the bipy's is expected for all new ligands, in solution and in the solid state, in order to minimize the steric repulsion of the nitrogen doublets.

Product	Isolated yield (%) ^{a)}	IR (cm ⁻¹) ^{b)}	¹ H NMR δ _{AB} (ppm) J _{AB} ; Δν(Hz) ^{c)}	UV-Vis. λ _{max} (nm) ε (M ⁻¹ cm ⁻¹) d)	Mass spectra ^{e)}
L3	78	3398, 1599	3.75 13.1; 193.6	290(44900) 230(36300)	1013
L4	29	-, 1600	3.51 12.3; 242.7	290(69500) 230(56200)	1377
Ls	23	3402, 1600	3.87 13.0; 184.7	290(68400) 231(66900)	1657
Ls	4	- , 1600	4.00 12.9; 230.1	284(63100) 230(72100)	2018

Table: Selected data for compounds depicted in Scheme

^{a)} averaged isolated yield obtained from at least two reactions; ^{b)} v_{O-H} and v_{bipy} measured in KBr pellets; ^{c)} measured in CDCl₃ solutions at room-temperature, data was referenced relative to the residual protitated solvent (7.25 ppm); ^d) measured in CH₂Cl₂ solutions at room-temperature; ^c) obtained by FAB⁺ using (m-NBA) as matrix and correspond to [M+H]⁺.

The calix [4] barreland L_6 exhibits a first order NMR spectrum, showing a highly symmetric molecule with a C₄ rotation axis along the center of the two calixarenes and a plane of symmetry crossing the middle of the carbon-carbon bonds of the bipy subunits. Based on their proton and carbon NMR spectra all four novel ligands adopt a fixed cone conformation in solution at room-temperature, with the bipy pendant subunits on the same side with respect to an ideal plane containing the bridging methylene groups of the macrocycle in podands L₃ and L₄.

Finally, preliminary Eu^{3+} complexation studies with ligands L₃ and L₄ show the straightforward synthesis of new fluorescent complexes.¹⁴ Due to the presence of four chromophores in podand L₄ the light harvesting is quite high (antenna effect) and the A-ET-E principle illustrated in the Scherne has been clearly established. The complex $[EuL_4]^{3+}$ has a high molar extinction coefficient and a high luminescence quantum yield. The efficiency of the incident light-emitted light conversion defined as the product of the absorption efficiency and the luminescence quantum yield, is the highest value (1.3 %) found up till now for a luminescent europium complex. Further development of this synthetic work will be directed toward the preparation of polymeric supramolecular devices and their use for dual emitting systems and as amperometric sensors, thanks to the presence of two or four phenolic groups, respectively in compounds L₃ and L₅. The photophysical studies of these novel ligands as well as their lanthanide complexes is currently in progress and will be published elsewhere.

Acknowledgments

We would like to thank Dr. Zouhair Asfari as well as Dr. C. Newton for helpful and fruitful discussions.

References and Notes

- Alpha, B.; Balzani, V.; Lehn, J.-M.; Perathoner, S.; Sabbatini, N. Angew. Chem. Int. Ed. Engl. 1987, 26, 1266-1267.
- 2. Pietraszkiewicz, M.; Pappalardo, S.; Finocchiaro, P.; Mamo, A.; Karpiuk, J. J. Chem. Soc. Chem. Comm. 1989, 1907-1908.
- 3. Balzani, V.; Lehn, J.-M.; Jan van de Loosdrecht, J.; Mecati, A.; Sabbatini, N.; Ziessel, R. Angew. Chem. Int. Ed. Engl. 1991, 30, 190-191.
- 4. Sabbatini, N.; Guardigli, M.; Bolletta, F.; Manet, I.; Ziessel, R. New. J. Chem. 1993, 17, 323-324.
- 5 Balzani, V.; Berghmans, E.; Lehn, J.-M.; Sabbatini, N.; Terörde, R.; Ziessel, R. Helv. Chim. Acta 1990, 73, 2083-2089.
- 6. Prodi, L.; Maestri, M.; Ziessel, R.; Balzani, V. Inorg. Chem. 1991, 30, 3798-3802.
- Ziessel, R.; Maestri, M., Prodi, L.; Balzani, V.; Van Dorsselaer, A. Inorg. Chem. 1993, 32, 1237-1241.
- 8. Sabbatini, N.; Guardigli, M.; Manet, I.; Bolletta, F.; Ziessel, R. Inorg. Chem. 1994, 33, 955-959.
- 9. Sabbatini, N.; Guardigli, M.; Manet, I.; Bolletta, F.; Ziessel, R. Angew. Chem. Int. Ed. Engl. 1994, 33, under press.
- 10. Sabbatini, N.; Guardigli, M.; Mecati, A.; Balzani, V.; Ungaro, R.; Ghidini, E.; Casnati, A.; Pochini, A. J. Chem. Soc. Chem. Comm. 1990, 878-879.
- 11. Grigg, R.; Holmes, J.M.; Jones, S.K.; Amilaprasadh Norbert, W.D.J. J. Chem. Soc. Chem. Comm. 1994, 185-187.
- 12. Beer, P.D.; Martin, J.P.; Drew, M.G.B. Tetrahedron 1992, 48, 9917-9928.
- 13. Beer, P.D.; Chen, Z.; Goulden, A.J.; Grieve, A.; Hesek, D.; Szemeskj F.; Wear, T. J. Chem. Soc. Chem. Comm. 1994, 1269-1271.
- 14. [Eu(L₃)](NO₃)₃·4H₂O 91%; FAB⁺ (m-NBA) 1289 [M-NO₃]⁺; elemental analysis: Found: C, 75.09; H, 7,68; N, 4.99, Calc. for C₆₈H₇₆N₄O₄·4H₂O (M_r = 1013.388 + 72.061): C, 75.25; H, 7.80; N, 5.16. [Eu(L₄)](Cl)₃·6H₂O 68%; FAB⁺(m-NBA) 1564 [M-2Cl]⁺, 1528 [M-3Cl-H]; elemental analysis: Found: C, 74.16; H, 7.25; N, 7.41, Calc. for C92H96N8O4·6H₂O (M_r = 1377.842 + 108.092): C, 74.37; H, 7.33; N, 7.54.

(Received in France 22 June 1994; accepted 7 July 1994)

6302